
FloMo: Tractable Motion Prediction with Normalizing Flows
The future motion of traffic participants is inherently uncertain. To plan safely, therefore, an autonomous agent must take into account multiple possible trajectory outcomes and prioritize them. Recently, this problem has been addressed with generative neural networks. However, most generative models either do not learn the true underlying trajectory distribution reliably, or do not allow predictions to be associated with likelihoods. In our work, we model motion prediction directly as a density estimation problem with a normalizing flow between a noise distribution and the future motion distribution. Our model, named FloMo, allows likelihoods to be computed in a single network pass and can be trained directly with maximum likelihood estimation. Furthermore, we propose a method to stabilize training flows on trajectory datasets and a new data augmentation transformation that improves the performance and generalization of our model. Our method achieves stateof-the-art performance on three popular prediction datasets, with a significant gap to most competing models.
WEITERE AKTUELLE THEMEN

Elektrobit: Test Lab auf stationäre Daten münzen
Elektrobit legt nicht zuletzt durch die Fortschritte in Providentia++ die Basis für Big-Data-Auswertungen von Verkehrsdaten. Simon Tiedemann von Elektrobit über die Entwicklungen im Rahmen von P++.

„Safety Guard“: Intel nutzt Vogelperspektive zur Erforschung neuer infrastrukturbasierter Sicherheitskonzepte
Forscher bei Intel Labs nutzen den digitalen Zwilling im Forschungsprojekt Providentia++, um eine „Safety Guard“ zu entwickeln, die den Verkehr sicherer macht.

fortiss-Echtzeitplattform: Algorithmen verteilen, bevor Engpässe auftreten
Datenfusion, Perzeption und Prädiktion waren die drei Themen, mit denen sich fortiss im Forschungsprojekt Providentia++ beschäftigt hat. Bernhard Blieninger zieht Bilanz.